UV-vis and Binding Studies of Cobalt Tetrasulfophthalocyanine–Thiolate Complexes as Intermediates of the Merox Process

Author(s):  
ALI NAVID ◽  
EDUARD M. TYAPOCHKIN ◽  
CHARLES J. ARCHER ◽  
EVGUENII I. KOZLIAK

Intermediates of the cobalt tetrasulfophthalocyanine ( CoTSPc )-catalyzed thiol autoxidation were studied by UV-vis spectroscopy. All thiolates react with CoTSPc resulting in the formation of 1:1 complexes. Three major factors control both the stability and aggregation of the complexes: thiolate basicity, metal-to-ligand charge transfer (MLCT) and π stacking. Basic thiolates partially reduce C oII TSPc , whereas CoTSPc complexes with low-basicity aliphatic thiolates ( p K a < 4) do not exhibit Co (II) reduction, based on the absence of the characteristic Co (I) charge transfer band at 450 nm. CoTSPc complexes with aliphatic and bulky aromatic thiolates appear to be aggregated in aqueous solutions and are characterized by a broad band at 650 nm. Non-bulky aromatic thiolates of low basicity ( p K a < 6) form unique stable monomeric Co II TSPc complexes. This unique spectral feature can be attributed to π stacking between the phthalocyanine ring and thiolate. Comparison of binding constants shows that the partial reduction of Co (II) significantly contributes to the thiolate binding. A combination of aromatic π stacking and MLCT appears to be responsible for the observed 1000-fold stronger binding of non-basic aromatic thiolates as compared with aliphatic ligands of similar basicity. Kinetic studies confirm the importance of the thiolate binding type for catalysis.

2014 ◽  
Vol 1052 ◽  
pp. 203-206
Author(s):  
Zhi Long Wang ◽  
Shi Qin Wang ◽  
Nin Yao ◽  
Xing Min Wei

(Gd,La)2-x O2CO3:Eux3+(0.01 ≤x≤0.04) were synthesized via a flux method at 400°C, and their photoluminescence properties under vacuum ultraviolet (VUV) excitation were examined. The excitation spectra showed two bands in the region from 125 nm to 300 nm, the first band centered at 190 nm was ascribed to absorption of related CO32- complex, and the second broad band centered at 246nm and 278nm in Gd2O2CO3:Eu3+ was ascribed to the charge transfer band of O2-→ Eu3+. Series samples exhibited red emission at around 611 nm under vacuum ultraviolet excitation corresponding to the 5D0→ 7F2.transition of Eu3+.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Nalin Abeydeera ◽  
Inoka C. Perera ◽  
Theshini Perera

Four Zn(II) complexes containing a pyridyl triazine core (L1 = 3-(2-pyridyl)-5,6-di(2-furyl)-1,2,4-triazine-5′,5″-disulfonic acid disodium salt and L2 = 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine-4′,4″-disulfonic acid sodium salt) were synthesized, and their chemical formulas were finalized as [Zn(L1)Cl2]·5H2O·ZnCl2 (1), [Zn(L1)2Cl2]·4H2O·2CH3OH (2), [Zn(L2)Cl2]·3H2O·CH3OH (3), and [Zn(L2)2Cl2] (4). The synthesized complexes are water soluble, making them good candidates for biological applications. All four complexes have been characterized by elemental analysis and 1H NMR, IR, and UV-Vis spectroscopy. The IR stretching frequency of N=N and C=N bonds of complexes 1–4 have shifted to lower frequencies in comparison with free ligands, and a bathochromic shift was observed in UV-Vis spectra of all four complexes. The binding studies of ligands and complexes 1–4 with bovine serum albumin (BSA) resulted binding constants (Kb) of 3.09 × 104 M−1, 12.30 × 104 M−1, and 16.84 × 104 M−1 for ferene, complex 1, and complex 2, respectively, indicating potent serum distribution via albumins.


2020 ◽  
Author(s):  
Tyler J. Brittain ◽  
Matthew C. O’Malley ◽  
Coleman M. Swaim ◽  
Reilly A. Fink ◽  
Oleksandr Kokhan

AbstractC-type cytochromes play an important role in respiration of dissimilatory metal-reducing bacteria. They form extended conduits for charge transfer between the cellular metabolism and external electron acceptors such as particles of iron oxide, metal ions, and humic substances. Out of more than a hundred c-type cytochromes in Geobacter sulfurreducens, only a small fraction has been previously characterized. Here we present our results on expression and biophysical characterization of GSU0105, a novel 3-heme cytochrome, important for Fe(III) respiration in G. sulfurreducens. We successfully cloned the gene and achieved ~3 mg/L of culture GSU0105 expression in E.coli. Despite a similar size (71 amino acids) and the same number of c-type hemes to the members of the cytochrome (cyt) c7 family, multiple sequence alignment suggests that GSU0105 does not belong to the cyt c7 family. UV-Vis spectroscopy revealed typical c-type cytochrome spectral features, including a weak iron-sulfur charge transfer band suggesting that at least one heme is ligated with a methionine residue. Far UV circular dichroism studies demonstrate approximately 35% content of α-helices and β-sheets, each, as well as thermal aggregation occurring above 60 °C. A combination of SAXS and analytical size exclusion chromatography data shows that GSU0105 is monomeric in solution. Finally, affinity pull-down assays demonstrate high binding affinity to PpcD and weaker binding to the other members of the cyt c7 family.


1996 ◽  
Vol 74 (1) ◽  
pp. 38-48 ◽  
Author(s):  
Chui Har Leon-Lai ◽  
Michael J. Gresser ◽  
Alan S. Tracey

The interactions of vanadate and its complexes of uridine, 5,6-dihydrouridine, and methyl β-D-ribofuranoside with bovine pancreatic ribonuclease A (RNase A) (EC 3.1.27.5) were studied by 51V NMR spectroscopy and enzyme kinetics. From kinetic studies, it was found that neither inorganic vanadate nor the methyl β-D-ribofuranoside–vanadate complex significantly inhibited the RNase A catalyzed hydrolysis of uridine 2′,3′-cyclic monophosphate. The NMR binding studies were in full agreement with the kinetics studies and showed that neither inorganic vanadate nor the methyl β-D-ribofuranoside–vanadate complex was bound tightly by the enzyme. Approximate binding constants were (5.0 ± 1.0) × 10−7 M and (3.0 ± 0.6) × 10−6 M for the uridine–and 5,6-dihydrouridine–vanadate complexes, respectively. An induced-fit mechanism is suggested, in which the pyrimidine subsite of the active site of RNase A must be fully occupied for the enzyme to be able to tightly bind the transition state or transition state analog. Calculation of the binding energies of vanadate complexes in ribonuclease, phosphoglycerate mutase, and phosphoglucomutase revealed an excess of binding energy over the analogous phosphate derivative of about 25 kJ/mol for all enzymes, even though the binding constants themselves varied by about six orders of magnitude. This energy represents about 40% of that expected to be available for a trigonal-bipyramidal transition state and requires a reassessment of the role of vanadate as a transition state analogue for phosphate transfer. Key words: vanadate, ribonuclease, transition state, binding constants, phosphate analogues, kinetics.


RSC Advances ◽  
2016 ◽  
Vol 6 (56) ◽  
pp. 50797-50807 ◽  
Author(s):  
N. Liu ◽  
J. Y. Si ◽  
G. M. Cai ◽  
Y. Tao

GdNbTiO6 has been used as a broad band excited host material absorbing UV radiation, and the excitation energy is transferred from the O2− → Nb5+(Ti4+) charge transfer band to the excited states of Eu3+/Dy3+ ions, presenting different emission colors.


1987 ◽  
Vol 35 (16) ◽  
pp. 8330-8340 ◽  
Author(s):  
M. C. G. Passeggi ◽  
E. C. Goldberg ◽  
J. Ferrón

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 298
Author(s):  
Shufang Liu ◽  
Shu’e Wang ◽  
Zhanzuo Liu

The morphology of nanomaterials may affect their interaction with biomacromolecules such as proteins. Previous work has studied the size-dependent binding of pristine nC60 to bovine/human serum albumin using the fluorometric method and found that the fluorescence inner filter effect might affect this interaction. However, if it is necessary to accurately calculate and obtain binding information, the fluorescence inner filter effect should not be ignored. This work aimed to further investigate the effect of the fluorescence inner filter on the interaction between pristine nC60 with different particle sizes (140–160, 120–140, 90–110, 50–70, and 30–50 nm) and bovine serum albumin for a more accurate comprehension of the binding of pristine nC60 to bovine serum albumin. The nC60 nanoparticles with different size distributions used in the experiments were obtained by the solvent displacement and centrifugation method. UV-Vis spectroscopy and fluorescence spectroscopy were used to study the binding of nC60 with different size distributions to bovine serum albumin (BSA) before and after eliminating the fluorescence inner filter effect. The results showed that the fluorescence inner filter effect had an influence on the interaction between nC60 and proteins to some extent, and still did not change the rule of the size-dependent binding of nC60 nanoparticles to BSA. Further studies on the binding parameters (binding constants and the number of binding sites) between them were performed, and the effect of the binding on BSA structures and conformation were also speculated.


Sign in / Sign up

Export Citation Format

Share Document